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Abstract 

The stability/instability condition of a turbine rotor with axisymmetric supports is determined in 
the presence of gyroscopic loads and rub-induced destabilizing forces. A modal representation of 
the turbine engine is used, with one mode in each of the vertical and horizontal planes. The use 
of non-spinning rotor modes permits an explicit treatment of gyroscopic effects. The two 
linearized modal equations of motion of a rotor with axisymmetric supports are reduced to a 
single equation in a complex variable. The resulting eigenvalues yield explicit expressions at the 
stability boundary, for the whirl frequency as well as the required damping in the presence of the 
available rub-induced de-stabilization. Conversely, the allowable destabilization in the presence 
of the available damping is also given. 

Introduction 

Simulation of blade to case rubbing is critical to the complete understanding of the dynamic 
behavior of rotordynamic systems such as aircraft engines. Aircraft engines experiencing 
unbalance loadings, blade-outs, or mechanical misalignments may incur blade to case rubbing 
which may adversely affect the dynamic behavior of the engine and supporting structures. In 
some situations, the rubbing may become excessive and may even lead to structural instability 
and in severe cases catastrophic failure of the structure. 

The purpose of the present paper is to determine the conditions for stabilityhstability of a 
turbine engine with rub-induced forces in the presence of gyroscopic forces. To develop a direct 
determination of the stabilityhnstability conditions, the equations of motion with rub forces 
obtained in Reference [ 11 are used as the starting point for the present investigation. In this study, 
the vertical and horizontal planes are each represented with one non-spinning vibration mode. 
Stabilityhnstability is then investigated by examining the corresponding eigenvalues of the 
characteristic equation. 

The thrust of this work is with a rotor with axisymmetric support stiffness. This model allows for 
a complex-variable representation of the rotor system, and a more direct determination of 
conditions at the stability-instability boundary. The notion of neutral stability at the boundary 
permits obtaining two real equations from the complex eigenvalue problem. Equations are 
derived for the possible whirl frequencies and the required damping (or the allowable de- 
stabilization), at the stability/instability boundary. 

Blade Rub Forces and Moments 

Limited data and experience with rub tests on turbofan engines and test rigs indicate that blade 
tip rub forces, resulting from blade tip and case interactions, are in a direction that is 
perpendicular to the blade tip chordline. This phenomenon is similar to the behavior of an airfoil 



traveling through a fluid where the airfoil motion generates a lift and drag forces. From tests, the 
tangential rub blade force was found to have an axial component that would move the blade 
forward (or aft), and a circumferential component that opposes the rotor rotation. The 
hydrodynamic analogy expresses the blade rub force as proportional to the blade tip’s mean 
velocity and the instantaneous angle of attack or incidence. It differs from the typically used 
friction model of rub in that the friction model only generates a force in the direction opposing 
the rotor spin (Le., drag) while the plowing model generates this drag force, as well as a “lifting” 
force that is perpendicular to the direction of rotor spin. A more detailed description of this rub 
model is provided in Reference [ 11. 

An analytical expression, analogous to the dynamic pressure force from a change in momentum 
is used to develop the plowing model. This model is consistent with expressions of impact forces 
and hydrodynamic pressure. This was necessitated by the observed directionality of the blade tip 
“tangential” rub forces, i.e., perpendicular to the blade chordline. 

The hydrodynamic force is defined as: 

(1) T = D* 2 2  R Y ~ A =  DV~Y,A 

where f is the total tangential force on the blade from rubbing, V is the blade tip velocity, YO is 
the blade chordline angle of incidence in the rotating frame, and A is the frontal area of the 
rubbing material @e., chord length x rub depth). D is a coefficient that must be determined from 
test or some other analysis procedure. It is most likely a function of several factors such as the 
material’s Young and Shear moduli, density, hardness, machinability, feed depth, dynamic shear 
strength, smoothness and probably others. 

The loads in the fixed coordinates system are: 

ix = f sin yo sinp -K,x 

- - 
f, = -f sin yo cos P - K, y 

fa = -f cosy0 COSPR 

io = f cos yo sin PR 

Where E is the radial stiffness. Noting that: 

sin P = and cos P = 



And substituting into (2 )  and (3), the rub loads become, 

- a 2  2 f, = ~ y r  R yoysin yo -K,X 

- - 2  2 - 
f, = -Dyr R yoxsin yo - K,y 

2 3  Fa = -Dq R y~xcosyo 

= DQ2R3yoy COS yo 

Modal Tkansformation of the Rub Loads 

As a first step to simplifying the equations of motion, the translational and rotational rub forces 
in (4) and (5) are transformed to modal coordinates. The following considerations are used to 
obtain the modal rub forces: 

1. There is one modal function in each of the horizontal (x,  a) and vertical (y, 0) planes. 

2. The rotational (a, e) deflections are the slopes of the bending displacements. 

3. Because of the (x, y ,  a, 0) sign conventions, it is seen that: 

e=--- 9 and a=+- ax 
a2 & 

4. The modal functions in the fixed axes are non-rotating. 

5. The modal functions are mass normalized. 

Now let the modal displacements be as follows: 

x = a(t) 

Y =m 
a = Zh(t) 

e = -Gv(t) 



Wherex, y , i i ,  g are mode shapes and h (t) and v(t) are horizontal and vertical plane 
displacement generalized coordinates, respectively. 

Following the Principle of Virtual Work, the modal forces in the horizontal and vertical planes 
are: 

Where the rub forces are integrated over the tangential extent of the rub, “s”, then summed over 
all rubbing blades. 

Making the physical-to-modal displacement substitutions, the modal rub forces become: 

fh = J{D$ 2 2  R yo(~sinyov(t)-REcosyoh(t))-~rf12h(t))ls 

Defining the following modal integrals: 
- 
Kx = JXrX2ds 

S,, = Jxyds 

Se, = [gyds 

Then substituting into (sa) and 9(b) yields: 

fh = D$ R 2 2  - 
sinvov(t)-RSax cosyoh(t)}-Kxh(t) 



f ,  = D$J 2 2  R yo{-S,, sinyoh(t)-RSex cosyov(t)}-Kyv(t) 

The following variables are defined to ease the required algebraic manipulations: 

2 2  So = D$J R yoSXy sin yo 

Substituting into (loa) and (lob) the modal rub force equations are: 

=soV(t)-kxh(t)-Shh(t) 

Fv = -Soh(t) - Kyv(t) - S,v(t) 

The Modal Equations of Motion 

The modal equations of motion are obtained by combining the modal rub forces, ( l l a )  and (llb), 
with the modal inertia, stiffness, damping and gyroscopic forces. The latter forces are obtained 
by using the translational and rotational values of the horizontal and vertical modal vectors to 
transform the physical inertia, stiffness, damping and gyroscopic properties to modal 
coordinates. Performing these transformations and using the modal rub forces derived in the 
previous section yields the following modal equations of motion (see also References [2] and 
[31): 

h + Wlh -t 2WhShh + 2$Jgir = f h  (12a) 

Substituting the rub forces and collecting coefficients of the same dependent variables we have 
the following: 

h + (wi +kx + s h  )h + 2Whthh -k 2$J@-sOv = 0 (134 

v + (w: + KY + s, )v + 2 W v ~ , V  - 2*gh 3- s o v  = 0 (13b) 



In general, the system is non-axisymmetric in the rotor/support modal stiffness, as well as in the 
damping. Also, unless the horizontal and vertical modal displacements are equal, the direct rub 
force coefficients Sh, and S,, EX and Ky , also are not equal. However, many incidents of turbine 
engine whirling exhibit circular or almost circular orbits. Furthermore, one may also be able to 
construct highly elliptical orbits from identical uncoupled horizontal and vertical mode shapes 
even when the corresponding modal stiffnesses or frequencies are grossly different. Therefore, to 
simplify the modal equations of motion it will be assumed that the horizontal and vertical mode 
shapes are the same. However, the support stiffnesses and modal frequencies may be unequal. 

- 

With this consideration the following additional simplification is made: 

Where the local case and rotor radial stiffness is assumed to be isotropic and axisymmetric. 
Additionally, the modal damping is assumed to be identical in both planes. The damping 
symmetry is justified since damping values are difficult to obtain and in most analyses is an 
educated guess, at best. Assuming symmetric damping: 

Finally, the modal equations of motion are: 

Where the support non-axisymmetry is reflected in the horizontal and vertical modal frequencies, 
wh and wv. 

Stability of Rotor with Axisymmetric Supports 

It had been shown by various investigators such as Gallardo [4], Smith [5], Ehrich [6], Alford [7] 
and others, that the least stable rotating system is axisymmetric. Thus one may initially perform a 
stability analysis of a rotor with an axisymmetric support. Then, if the axisymmetric system is 
stable, no additional analysis may be required, since a non-axisymmetric supported system will 
always be more stable than the identical rotor with symmetric supports. 

In the special problem of an axisymmetric rotor system the stability/instability conditions are 
obtained with greater simplicity and directness. The modal equations of motion of rotor with 
axisymmetric support stiffness are obtained from the previous section by making the modal 
frequencies equal. Thus: 



h + (w; + E+S1)l +3h + 2@g+ -sov = 0 

v + (w; + E + Sl )v + 3v - 2@gh + Soh = 0 

Where: wo = wh = w,. 

Equations (15a) and (15b) are combined into a single equation by introducing the complex 
variable z, where z = h + iv . Multiplying the second equation of motion, (15b), by (i) and adding 
it to the first, (15a), and using the complex variable definition, we have 

2 + (wt +E + s,k + <i - i2*gi + isoz = o 
Assuming a solution in the complex exponential form: 

z = zoeiht = zoe i(A+iB)t - - zoe -BteiAt 

Where the coefficient zo and the eigenvalue A are complex quantities and “A” and “B” are real 
numbers. 

Furthermore: 

Real ( A  ) = A = frequency (real quantity) 

h a g  ( A )  = B = attenuation or amplification factor (real quantity) and: 

B > 0, stable 

B < 0, unstable 

Stability/Instability Boundary of the Axisymmetric System 

Substituting the exponential solution into the complex variable equation of motion (16), one 
obtains: 

The condition for the existence of a nontrivial solution requires that the polynomial coefficient of 
“z” must vanish: 



At the stability-instability boundary, the solution is simple harmonic, which implies that A = 
Real at the boundary. Therefore, since all the parameters in the Eigen polynomial, (18), are real 
and non-zero, then the following holds at the stability/instability boundary: 

Real part of I; ( A )  = 0 

Imaginary part of F ( A  ) = 0 

And we have two equations at the stability boundary: 

A2 -U@g-(w; +K+S,)  = 0 

A < + S o  = 0 
Equation (19a) is solved for A which gives the possible frequencies at the boundary. 

A=Qg+,/@2g2+(W,-, 2 -  + K + S , )  

Using the frequency, A determined above and Equation (19b), the damping required for stability 
is: 

Since the term So is always destabilizing (So> 0), for a system to be stable, the system damping 
<must be positive ( 3  > 0). Therefore: A = A -  c 0, at the boundary because B = 0 at the 
boundary, and 3 and So are positive. Furthermore, A = A + > 0, is always stable because if A > 0 
then B > 0. 

From the above, the results for the rotor-rub stabilityhstability boundary are: 

Whirl frequency: A- = (!g - Jq2g2 + (Wi  +E + SI)  

And the required damping, CREQ = -- S O  
A- 

Comparison of the available damping to the required damping (in the presence of a de- 
stabilization) gives a measure of the stability of the system: 



Recall that SO and SI contain the plowing rub coefficients, comprised of the rub constant, rotor 
speed, blade tip angle and tip radius and E, is the radial-rub restoring or snubbing force, which 
may or may not be dependent on the rub parameters. Recognizing: 

cos Yo cot yo = - 
sin yo 

SI may be written in terms of SO as: 

%X 

S X Y  
SI = SoRp, where p = -cot yo 

Making the above substitutions into the expressions for the whirl frequency and required 
damping, we have, at the stability instability boundary, the following results. 

Whirl frequency: A- = $g - Jq2g2 + (wi + E + s , R ~ )  

@Ob) Required damping: (EQ = - SO 
$g - ,/$’g2 + (w: + E + SoRp) 

The rotor shown in Figure 1 is used to demonstrate the use of Equation (20) for determining the 
whirl frequency and required damping for a known quantity of rub. The rotor consists of a 
massless cantilever shaft with a disk attached at the free end. The properties of the rotor are 
shown in the figure. The non-rotating frequencies and modes shapes are computed from a finite 
element analysis. The first modal frequency and mode shape is: 

wo = wh = w, =3.O71x1O2 rad/sec 



- Disk 
M = 100. Ibm 
I,= 20,000. Ibm-inch2 
Gravity = 386. inch/sec2 
Radius = 5 inch 
Blade Angle = 30 degrees, 

Rotor Shaft 
E = 3 0 . ~ 1 0 ~  Ib/inch2 
I = 20. inch4 
L = 40. inch 

+ 
Rotation 
Vector 

\ 

/ Rub SDrinq 
K = 3.~103 Ib/inch 
Rub Length = 5 inch 

Figure 1. Cantilever Rotor 

Substituting the above values, and the values for blade angle, disk radius, rub stiffness and 
length, into Equation (20a) and (20b), the whirl frequency and required damping are: 

A =0.2644$-/+d.0699$2 + 1 4 . 4 5 ~ 1 0 ~  +37.04Dlir2 

109.6 DQ2 
A 3REa = -  

Figure 2 shows the result of plotting the whirl frequency and required damping as a function of 
rotor speed for a variety of dynamic rub coefficients. The whirl frequencies associated with both 
the forward, A, and the backward, A- mode are shown in Figure 2a, however only the backward 
whirl frequency is significant since the backward whirl frequency is used to calculate the 
required damping for a stable system. The required damping as a function of rotor speed for 
various levels of rub is shown in Figure 2b. As expected and depicted in the figure, the required 
damping increases with both rotor speed and rub force. 
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Figure 2a. Whirl Frequency at Stability/Instability Boundary 
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Figure 2b. Required Damping at StabilityDnstability Boundary 

Allowable Destabilization for an Available Damping 

The damping relation may be solved for the allowable destabilization SO, in terms of the available 
damping. In this context, Equation (20b) is solved (with the available damping assumed to be 
known), for the destabilization that can be allowed that will make the initially stable system 
approach neutral stability or the stability/instability boundary. 

Thus the corresponding relation is: 

And the converse expression for the allowable destabilization in the presence of the available 
damping becomes, 



Equation (21) is complicated since SO is on both sides of the equal (=) sign. However, with some 
algebraic manipulation, the allowable destabilization can be obtained explicitly. Rearranging 
Equation (21) yields: 

Noting that So occurs skew-symmetrically in the modal equations of motion [Equation (13)], and 
that it has a positive sign (+) in the vertical modal equation and a negative (-) sign in the 
horizontal. Thus, in the mathematical context, only a positive (+) for SO is admissible. The signs 
of SO in the equations of motion reflect the unstable whirl direction, such that a positive sign in 
the vertical DOF (negative in the horizontal DOF) may indicate a backward whirl, while 
opposite signs would denote a forward whirl. This effect is also seen in the expression for the 
required damping. 

The assessment of system stability or instability can then be made by comparing the available 
destabilization to its allowable value, in the presence of the available damping. Thus: 

Concluding Remarks 

The linearized modal equations of motion of a rotor with non-axisymmetric stiffnesses with both 
gyroscopic and rub forces have been obtained. The equations of the special case of a rotor with 
axisymmetric support have also been derived. The latter equations are used to determine the 
influence of the rub forces on rotor stability/instability boundaries. 

The two-mode representation (one in each vertical and horizontal plane) of the equations of 
motion was considered. For the axisymmetric support case, the modal equations of motion were 
reduced to one equation using a complex variable to describe the rotor motions. A method was 
derived to investigate the conditions at the stability/instability boundary. 

At the boundary, the whirl frequencies and required damping for the available value of the de- 
stabilizing coefficient are obtained. The converse, which is the allowable de-stabilizing 
coefficients in terms of the available damping, is also derived. These expressions are in closed 
form, and provide a convenient way to assess the stability/instability implications of both rub 
force parameters and the rotor system's modal inertial, damping, elastic and gyroscopic 
properties. 

The analysis for the axisymmetric rotor system may be considered as a negative 
stability/instability criterion, in that an axisymmetric system is the least stable configuration. 



Thus, if this analysis indicates a stable rotor, an analysis of a rotor with non-axisymmetric 
support stiffnesses may not be required, since the latter configuration is always more stable than 
the former. 
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